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ABSTRACT

The scanning characteristics of an offset-feed near-field Gregorian

antenna excited with a planar array are investigated. The analysis

is based on the assumption that the fields in the near-zone region of

the array can be accurately determined by the methods of ray optics,

i.e., geometrical propagation along ray trajectories. Scalar diffrac -

tion theory is used to compute secondary characteristics. For one

example considered, a 1/20 beam is scanned over a cone with a half

angle of approximately 70 as defined by the -3--dB scan-loss crite-

rion. The effects of changing parameters - magnification, reflector

sizes, frequency, etc. - on the scan characteristics are discussed.

An experiment which was performed to demonstrate the technique is

described.
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LIMITED ELECTRONIC SCANNING WITH AN OFFSET-FEED

NEAR-FIELD GREGORIAN SYSTEM

1. INTRODUCTION

Limited-scan-antenna techniques, which combine mechanical and some degree of electronic
beam steering have application in systems which must acquire and track a number of targets
within a limited angular region centered on the mechanical axis. Recently, the near-field Cas-
segrainian antenna which utilizes confocal paraboloids and a relatively small planar-array feed
was shown to have some attractive features as a limited-scan system. Over the limited range
of scan afforded, the system combines the high resolution and (to a large degree) the low cost of
a reflector antenna with the performance capabilities of an electronically scanned array.

if

Fig. 1. Offset-feed Gregorian geometry.

To achieve good scan range with the near-field Cassegrainian system, the subreflector and
consequently the blockage ratio must be relatively large. The resulting degradation of the effi-
ciency and sidelobe characteristics is the main disadvantage of this technique. A variation on
the basic theme, which we will investigate here, is the offset-feed near-field Gregorian geometry
shown schematically in Fig. I. The subreflector is well into the near-field of the array and both
reflectors are offset sections of confocal, coaxial paraboloids. Dudkovsky2 proposed this con-
figuration for efficiently illuminating a large reflector, and Skahill, et al.3 first investigated the
off-axis properties of the system.



- Vt) ' I,/,I(/

71; t/2tI 2 (f/lia /J

FOCAL LENGTH OF MAIN DISH2

f2FOCAL LENGTH OF SU9DISH'

Fig. 2. Parameters defining offset-feed configuration.

I D 0)

CIf I ,y 1 ,z I

Fig. 3. Path of general ray showing coordinates 6, w and e', ,

2



The advantages of the offset-feed geometry as opposed to the circularly symmetric Casse-

grainian are:

(a) Blockage is eliminated; the efficiency and sidelobes are not sacrificed
when using the larger subreflectors required for increased scan coverage.

(b) Spillover, the main cause of scan loss with the Cassegrainian feed, is
markedly reduced because the array can be positioned very close to an
enlarged subreflector.

Both systems enjoy the absence of "coma" commonly associated with the off-axis properties of

a paraboloid. The offset-feed geometry is applicable to circular sections of paraboloids as well

as to parabolic cylinders. The latter configuration would result in a prohibitive amount of block-

ing with the Cassegrainian approach.

Interest in this technique was generated by the desire for an electronically scanned array

for the measurements program at the Western Test Range. Field experiments on a multiple-

target complex made at long ranges, e.g., pertaining to area or regional defense concepts, would

require an array with high sensitivity and high resolution, but a limited field of view would suf-

fice. At shorter ranges, measurements associated with the Hardsite defense concept would re-

quire an array with much greater scan coverage but with reduced sensitivity requirements. An

attractive feature of the offset-feed geometry is the possibility of satisfying both of these con-
flicting requirements by rapidly removing the subreflector to expose the array for use in the lat-

ter mode of operation. In simple terms, the array is fitted with a rapidly removable telescope

for long-range viewing and, as with any telescope, the field of view is diminished in proportion

to the magnification.

Our purpose is to evaluate the scanning capabilities of the three-dimensional near-field

Gregorian geometry, i.e., circular sections of paraboloids, with an analysis based on ray-tracing
techniques and scalar diffraction theory. The analysis is based on the assumption that the fields

in the near-zone region of the array (the distance to the subreflector) are accurately determined

by the methods of ray otpics. We will also describe an experiment which was performed to ver-

ify the technique.

H1. ANALYSIS

Figure 2 shows the parameters which define the geometry. Both reflectors shown are sec-
tions of confocal paraboloids which are circular when projected into the x-y plane. The main

reflector is that portion of the complete paraboloid intersected by the cylinder [x - (fl/f 2 ) hi 2 +
2 2y = [(fl/f 2 ) (d/2)]2; similarly, the subreflector outline is defined by the cylinder (x + h2 ) + y =

(d 2 /2)2. The main aperture when defined in this manner is completely utilized for the boresight
beam. Just as with the near-field Cassegrainian system, there is no space attenuation with the

offset-feed geometry. The form of the amplitude distribution applied to the array is reproduced

over the main aperture without alteration.

The subreflector is illuminated with a linear phase front by placing it well into thie near-field

of the array. The secondary beam is scanned simply by generating a linear phase tilt on the

array. If 0, (p are the coordinates which define the phase tilt of the array, and e', ý' are the

spherical coordinates defining the secondary-beam position (see Fig. 3), then for small angles,

0 = (f /f 2 ) e'

(p0'+ .p (t)

3



Unfortunately, Eq. (1) applies only for a few beamwidths scan from boresight. Over most of the
interesting scan range, the relationship between the two sets of coordinates is nonlinear.

"the objective of the ray-tracing procedure is to determine the amplitude and phase distribu-

tion over the main aperture plane as a function of the known amplitude and linear phase distribu-
tions on the array aperture. Scalar diffraction theory is then used to evaluate the secondary

characteristics of the system. It should be noted that diffraction effects arising from the near-

field assumption and the edge effects associated with both reflectors are not part of the analysis.

f2

-~~ ~ V2.-- m.(M.L)

"d'r ,1 V f 2

- -n~l Y,.~-)-t V 2
m.M(-YM.,I 2)

M-M M. d

Fig. 4. Subdivision of array aperture for numerical analysis.

Figure 4 illustrates how the array aperture is divided into a two-dimensional lattice of

equally spaced sampling points. The index M sets the number of rays traced as well as the num-

ber of sampling points on the main aperture. This parameter determines the trade-off between

computational labor and the accuracy of the computed patterns. For each pair of coordinate

points xM, Yn and for a given 0, qp, the coordinates of the points of reflection which describe the

passage of the ray through the system are computed and then used to determine the optical path

length Lmn. The parameters d, h, I, hz, d 2 and the coordinates of points on the array and sub-

reflector are normalized to f2 . The coordinates of the main reflector and the assumed aperture

plane are normalized to f,. The phase distribution over the main aperture is given by

(xm,n' Ymin) ; + y sinq9l (f1 /E2 ) (L/f)(

Trhis phase function is simply the sum of the linear phase shift applied to the array and the elec-

trical path length as determined by ray tracing.

The amplitude distribution over the main aperture plane, denoted E' (x • yn' is related
to the assumed distribution on the array by conservation of energy in ray optics. Thus,

AxAyE2 (xnmYn) (fi/fV) 2 A ' 4Y' El (x' n;y _) (3)

4



or

2 E(xm, Yn)
E'(x, n, ) (fn, 1) M-- 2

JZ m,n rnn

where

Ax = A j-2 (d/2f2 )
"L•xn, = x•yl~ -M t,

m' n m,n = m+1 m,n

m *n = mrnn+i Ymn

The pattern P(e', qpt) is computed with the well-known expression from scalar diffraction

theory in summation form:

P(el', V) : l lx'Ay'n E'(x' ;y' ) exp 1-j'4,x' n;• n)Smmn
m n

X exp [jZ2r(fl/f.) (f 2 /A) sinO'(x•,n cos (P' + Ynn sin(p!) (4)

By combining Eqs. (3) and (4) and omitting unnecessary constants,

P(6_, ( ./I. = jynx ,exp -/2I1m=1') n=1 m n m~nnE m, n) e m. n; 4, n)"

X exp lj2,(f /f 2 ) (17h) sine'(x';n cosq9' + Y'n sinP"I) (5)

where * (x' yn;yY',n) is given by Eq. (2). Rays which are spilled over either the subreflector or
the Mnain reflector are excluded in the ray-tracing portion of the program. The coordinates of
a point of reflection on the subreflector xzm,n; Y2mn must satisfy the inequality

[X2mn + (h2 /f 2 )J2 + Y2mn< (d2 /2f 2 )2  (6)

Similarly, a point xlmn; Ylm,n on the main reflector must satisfy the inequality

2Xlm,n- (h/fZ)]Z + Ylm n < (d/2f,)2  (7)

Table I lists the input parameters to the computer program. Following are some comments on
the nature and restrictions of each of these parimeters.

The index M determines the number of sampling points over the main aperture. In order to
deal with a manageable computational load, we must restrict the pattern computations to the prin-

cipal lobe and the first few near-in sidelobes. It is difficult to determine precisely the magnitude
of M required. Methods available for numerical evaluation of diffraction integrals such as

Newton-Coates, Gaussian quadrature, etc., are not directly applicable to our problem. A nu-
merical investigation has shown that a value of M = 30 results in an error of less than 1.0dB over
the first three sidelobes. A value of M = 15 (approximately ozhe-,fourth the computational labor)
accurately predicts scan loss and the form of the main beam, and was generally used when In-

vestigating the effect of varying parameters. A few of the more interesting configurations were
then computed with M = 30.



TABLE I

INPUT PARAMETERS TO THE COMPUTER PROGRAM

M Typically, 15 4 M 4 30

Array phase tilt

fl/f2 Magnification

h/f 2

"d/f2

1/f2 Geometrical parameters

h 2 /f2
d2 2

f2 /X Frequency term

Distribution on array

The coordinates e, p define the normal to the linear phase front assumed for the array and

are not, in general, linearly related to the coordinates el, q, which define the position of the sec-

ondary beam. The program is designed to locate the secondary-beam peak with a maximizing

routine before computing pattern cuts.

The linear magnification for the boresight beam (e = 0) is f1 /f 2 . The increase in gain of the

system relative to the gain of the array is a function of the magnification only and is given by

S= i0 log(f 1 /f 2 )2  (8)

array

The geometrical parameters determine the size and positioning of the array as well as the

two reflectors. The constraint (7), which defines the outline of the main reflector, can be mod-

ified or removed to investigate the effects of an "oversized" main reflector. Whmn (7) is used,

the main reflector is completely utilized for the boresight beam.

The parameters K and C determine the form of the amplitude distribution applied to the

array. The expression used is

E(xm, Yn) 1 - (d/Zfz) 1 + C (9)

Hence K = 0, C = 0 corresponds to a uniform distribution: K = 1, C = 0 is a (1 - p2 ) distribution;

etc. A full-wave sine difference distribution was also used in some cases to investigate the scan-

ning characteristics of a typical error pattern.

6



MI. COMPUTED RESULTS

The large number of parameters and the asymmetrical nature of the system preclude a sim-

ple set of curves to describe performance characteristics. We will consider an example in some

detail and then discuss the influence of various parameters.

Figure 5 shows a cross section of the example considered. The magnification is 3.0 and the

main reflector size (136A) corresponds to a nominal t/2' beam. An orthographic projection of14 1. 7,
PARAMETERS

f'02 '30
.. •f2 /), 52 5

d/12 ' 0 666
d2/f, • 1.60

Dleff / 1 -h/f. 0 7 9

h21f2

192 X~

Fig. 5. Parameters of example with magnification
of 3.0 and nominal 1/20 beam.

45A

- 21UA

the far-field coordinates e', (p' is shown in Fig. 6. The - 3-dB scan-loss contours are as indicated,

and the circles represent (approximately) the - 3-dB contour of the 1/2' beam. Note that the lin-

ear relationship between coordinate pairs [Eq. (1)] applies only for scanning a few beamwidths

from boresight. Over most of the usable scan range, the relationship is nonlinear. For any

plane q = constant, the patterns are computed for 4V increments in e.
For the boresight beam, a ,real image (i.e., an airy disk) is created at the focal point of the

reflectors. All power transmitted by the array is contained within an area on the order of a

wavelength in diameter. As the array is scanned in the plane (p = ir, this high-energy concentra-

tion, although somewhat diffused, approaches the top edge of the array. Hence, if 0 is allowed

to exceed a certain value, a condition of near-total blockage can quickly result. The upper bound

on 0 depends on the magnification and the position of the array. Typical limiting values are 16"

to 18!. The cros.,-hatched region at the top of Fig. 6 indicates the approximate region where

blockage can occur. The scan coverage with the (1 - p2) taper as defined by the -- 3-d13 scan-loss

criterion is a cone with a half angle of approximately 7' or 14 beamwidths.

Figures 7, 8 and 9 show the computed patterns for the (I - p2) distribution in the three prin-

cipal planes. In the vertical plane (Fig. 7), V = 0, v' = 7r corresponds to scanning the array up

and the secondary beam down. In this plane, the half-power buamwidths are constant, even be-

yond the - 3-dB scan-loss point, but there is clear evidence of phase distortion. The implication

7
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Fig. 6. Orthographic projection of coordinates
eV" showing nonlinear relatorship between

0- 3 v/2 coordinate systems and scan-coverage contours.
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9-4* region where blockage occurs is cross-hatched.
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Fig. 8. Computed diagonal-plane patterns for parameters of Fig. 5 with K 1, C 0.
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Fig. 9. Computed horizontal -plan. patterns for parameters of Fig. 5 with K 1 1, C 0.
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is that scan range is limited by phase aberrations. For f = a, the beam broadens with very little

distortion as scan is increased, indicating that spillover and aperture reduction are the principal

causes of scan loss. Diagonal-plane patterns (Fig. 8) are very similar to the vertical patterns.

The patterns in the horizontal plane - the only plane of symmetry - apparently have a measure

of both spillover and phase aberrations. Note that in this plane, the patterns are well-defined

and usable beyond the - 3-dB scan-loss point. Computed patterns with different distributions

show similar characteristics. A more severe taper, for example (I - p )2. yields increased

scan range and the "shoulders" on the scanned beam are less prominent. The uniform distribu-

tion results in less scan range and more pronounced distortion. Sidelobes at the - 3-dB scan-

loss point for p = 0 are 12 dB, and increase with greater scan.

Figure 10 illustrates the phase, spillover, and aperture reduction characteristics for a cen-

tral strip in the vertical plane. The edge rays from the feed aperture are shown for +30*, 0 and

-16°. The aperture reduction and spillover for the - 16 case are consistent with the broad,

distortion-free patterns 'of Fig. 7. Similarly, the large phase errors and relatively slight amount

of spillover associated with the +30* case explain the pattern behavior in the (P = W plane.

4+ 36-
_______ "+42.!j

-12- 4I-

o.,:( 151) 
I s

-oo

-30

Fig. 10. Illustration of phase, spillover, and aperture reduction characteristics
for central strip In vertical plane. Deff for each case is as defined by extreme
rays from feed aperture.

A substantial number of configurations were investigated by varying the parameters listed

in Table I. In all cases, the general pattern characteristics - sidelobes, distortion, beam broad-

ening, etc. - were similar to those found with the example of Fig. S.

The following sections discuss the general characteristics of the system, and the significance

of changing parameters on the scan range that can be achieved.

t
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A. Reflector Sazes

The inequalities (6) and (7) define the outline of the reflectors. Iteimoving thest., contraints

is equivalent to using extended paraboloids for both reflectors. Tho scan range umder these' cvn-

ditions is approximately Ute same for w - 0 and V = w/Z, and increases for Wp -- i. l|wtvver. tile

scan range in the latter case is principally limited by array blockage. We cinnclude that ther(,
is little, if any, increase in scan range realized by building an oversize main reflector.

Obviously, there is no point in having a subreflector larger than that required to avoid ror-

ward spillover. Calculations with and without the constraint (7) indicate that an elliptical sub-
reflector, with its major axis in the horizontal plane, will yield the maximum scan range for a
given subreflector area. The improvement is limited to the horizontal plane and is not of great
significance. For the parameters of Fig. 5, an elliptical subreflector improves the scan range
in the horizontal plane by approximately one beamwidth. Typically, the improvement is less
than 10 percent.

For a fixed magnification, the scan range can be increased by in.. easing fr and f. in the
same ratio. The subreflector diameter must increase accordingly to iaintais, the same forward
spillover. Increasing the focal lengths by 25 percent in the example of Fig. 5 inc'eases the cone
of coverage from 70 to approximately 8.20. The disadvantage of increasing scan range in this
way is that the subreflector size must increase and the mechanical configuration becomes

awkward.

B. Magnification

If the focal length f, is changed with all other parameters held fixed, the magnification and
hence the effective aperture change in direct proportion. We found that, to a good approximation,
the scan range in all planes is inversely proportional to the magnification, that is, the number

of beamwidths scanned is constant. Also, to scan the secondary beam to the - 3-dB scan-loss
point, for example, requires approximately the same angle of tilt for the array.

Increasing the magnification with the effective aperture held constant (decreased array diam-
eter) reduces the scan range in a more complex fashion. The reduction in the ( = W plane is
greatest. However, by adjusting the parameters which define the location of the array and sub-
dish, the decrease is not nearly as great as the ratio of the magnifications. Figure 11 shows the
scan range achieved with a magnification of 3.5 and the main aperture the same size as the ex-
ample of Fig. 5. Note that the scan range is not greatly diminished from that shown in Fig. 6.

C. Frequency Dependence

Again using the parameters of Fig. 5, the frequency was halved and doubled to genersto. !
and 1/4' beams. The resulting scan-coverage diagram is shown in Fig. 1Z. The sican range is
least sensitive to frequency in the ( = w plane where spillover and aperture reduction predominate.
In general, the absolute scan range diminishes with increasing frequency but the number of beam-
widths scanned increases. The coverage area shown in Fig. tU, for example, when measured in
square beamwidths, is approximately 600 for the 1/2' beam and 1400 for the 1/4' beam, as de-

fined by the - 3-dB scan-loss criterion.

D. Array Position

The position of the array is not critical, although the favored position is as far back (f large)
and as high up (h small) as is consistent with avoiding (1) the blockage condition, and (Z) excessive

i
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*./ 7w- 4 PARAMETERS

•., •/ ,"ft/f 2. 35

f *k-52 0

- -/ 'a f 075

-, d2/f, .O.

h/f"2 ' 0135

h2 /1f2 0.593

11/f2 , ,23

Fig. 11. Theoretical scan-coverage diagram
-,3w/ -/ with magnification of 3.5 and 1/20 beam.
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a

_.o•0 7- i r /

0 0 1/40 BEAM

Q l/2* BEAM

Q 1' BEAM

Fig. 12. Scan-coverage contours with parameters
listed In Fig. 5. Parameter f /X is adjusted for 3/
1/40 and 1.00 beams.
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ft. I i 30 30

f2/X 52.5 52.5

7r*' ?/4 d/f a 0,866 0.666

K d2f 175 1.75

t10f2 0.70 079
h2f2065 0.65

1/f 2 050 023

Fig. 13. Scan-coverage contours illustrating
effect of array positioning.

8 2- 4- 6

30SCAN-LOSS CONTOURS
(K - 1, C - 0)

5 -/

forward spillover. Figure 13 shows the typical change in the scan contour as the array is re-

positioned. The parameters are similar to those of Fig. 5, with the subreflector diameter in-

creased to 90 A. Most of the apparent increase in scan range for the "favored" position cannot

be realized because of the blockage condition.

E. Difference Patterns

Figures 14 and 15 show difference patterns in the principal planes with full-wave sine distri-

butions. System parameters are the same as those of Fig. 5. The variation in null depth and

unbalance in the plane (p = 0 iE the result of the asymmetrical phase and spillover characteristics

in that plane.

The null fill-in with scan in the wp = 7r plane is the result of spillover past the bottom of the
main aperture, and aperture reduction (Fig. 10). The good balance is indicative of the absence

of phase errors when scanning in this direction. Error patterns in the horizontal plane (Fig. 15)

are not as well balanced but have deeper nulls and are relatively well behaved, just as with the

corresponding sum patterns.

The null positions (01) and the locations of the difference pattern peaks (u") coincide with the

corresponding sum-pattern peaks to within approximately one-tenth of a beamnwldth. This is the

accuracy to which the computer program determines beam location.

IV. EXPERIMENT

Figure 16 shows the equipment used for an experimental demonstration. The reflectors are
precinion (surface tolerance *0.010-inch peak) fiberglass laminates. The diameter of the main

13
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Fig. 14. Di fference -pattern characteristics in, vertical plane for example shown in Fig. 5.

9.8, is,

-5 241

-10-

dO B

-20

-252

E oco,,yo) s siln ri d2 2

4 4 80 12

Fig. 15. Difference -pattern characteristics in horizontal plane for example shown in Fig.5.
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Fig. 16. Photograph of experimental equipment.
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reflector is 48 inches (projected on the aperture plane) which generates a nominal 1/2° beam at

the test frequency of 35.0GHz. The array is simulated with a 12-inch-diameter paraboloid with

a conventional focal point feed. The feed dish is mounted to permit rotation about any axis in its

aperture plane. The subreflector is mounted in the same manner to facilitate initial focusing of

the system. The following parameters were used in the experiment:

fl /f2 =4.0

h 2 /f 2  0.583

h/f 2  0.75

I/f 2  0.23

d2 /f 2  2.041

d/f 2 = 0.875

f2 /A = 40.71

Figure 47 shows the measured boresight patterns. The primary patterns have similar char-

acteristics, i.e., sidelobes are >24.0dB and the H-plane pattern is approximately 10 percent

broader than the E-plane pattern. This indicates that the feed-aperture distribution is accurately

reproduced in form over the main aperture. The computed and measured positions of the second-

ary beams are shown in Fig. 18. Agreement is to within approximately one-tenth of a beamwidth,

which is about the limit of experimental accuracy. Comparisons of experimental and theoretical

patterns (computed using the parameters listed above with K = 4, C = 0) in the vertical and hor-

izontal planes are shown in Figs. 19 through 22. When the feed dish is scanned downward in the

vertical plane (p = r), the top of the feed aperture is moved into the region of high-field density,

4, 15

tI



048\

ELEVATION PLANE (E-PI0n.)

HORIZONTAL PLANE (H-Plare)

-45 K-
.101

_• dB
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Fig. 17. Meosured boresight patterns in two principal planes at 35.0 GHz.
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hence, the blockage condition occurs sooner than would be the cast, wilh ani ,h't imtricilly scanned

array.

In general, the theoretical and the measured characteristics are in VMloS(, i1r1V•,•,1it. Scan

range, beam broadening and sidelobe behavior are essentially as prdic•t•d. Lack of agreement

as the result of different tapers (K = t, C = 0 was used for the coniputlations and the actual dix:-

tribution i.; net circularly symmetric) and the simulation of phase scanning with mvchanical scan

is negligible. A cosO factor in projected aperture is the prinipal difference betwcen mechanical

and electronic scan which should not be uf great significance in viewv of the spillover-phase char-

acteristics depicted in Fig. 10.

Patterns were measured in the plane orthogonal to the plane of scan at the extreme scan

positions. In all cases, sidelobes were lower and beamwidths were equal to or le3s than the cor-

responding pattern in the plane of scan.

V. SUMMARY AND DISCUSSION

The combination of array and reflector techniques in the near-field Gregorian configuration

has been demonstrated to perform exceptionally well as a limited-field-of-view system. The

important characteristics of the system are summarized as follows:

Although the feed array is scanned with simple row-column beam-steering
commands, the nonlinear relationship between the . 0 and 8', o' coordi-
nates introduces some complication to the beam-steering unit. Polyno-
mial curve-fitting techniques or a "look-up" table will be required to locate
the position of the main beam.

The main aperture is completely utilized for the boresight beam. There
appears to be little, if any, increase in scan range with an oversized
main reflector.

The sidelobes are well behaved in all planes of scan. The effects of "coma"
are noticeably absent.

Varying the magnification (changing fl) with all other parameters held fixed
changes the effective aperture in direct proportion. The scan range meas-
ured in beamwidths is constant under these conditions.

With an effective aperture and magnification held fixed, the scan range
can be improved by increasing the focal lengths in the same proportion.
This results in a larger subreflector and a more awkward mechanical
configuration.

The frequency dependence of scan range follows a complex fractional
power law which is dependent on the choice of parameters and the plane
of scan. In general, the absolute scan range diminishes but the number
of beamwidths scanned increases with increasing frequency.

The related near-field Cassegrainian system is better suited for modifying a radar in the

field for limited-scan capability. The offset-feed geometry is less suitable for this purpose and

presents a less attractive geometry for pedestal mounting. However, performance character-

istics - scan range, sidelobes, efficiency, etc. - are considerably improved.

Further improvement in performance may be achieved by shaping the subreflector, i.e.,

using a computed nonparabolic contour, to minimize phase aberrations. This is suggested by

the fact that the extremes of scan use different portions of the oversized subreflector. This

approach has not been investigated.

The analysis considers a coaxial reflector system. The feed and subreflector could be ro-

tated as a unit about the focal point without affecting collimation for the boresight beam. A slight

amount of space attenuation would be introduced, The possibility of improving scan •',"racter-

istics with such a rotation is also open for study.
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APPENDIX

RAY-TRACING PROCEDURE

Referring to Fig. 3. we compute the path length of a general ray from a point (x, y, - ) on

the array aperture through the two-reflector system to the corresponding point in the main aper-
ture plane (x', y', z' = 0). The origin of the coordinate system coincides with the focal point of

both reflectors. The main aperture plane is arbitrarily chosen to be in the focal plane or the

x-yplane. A point on the subreflector is denoted (x2 , y2 , Z2 ). Similarly, (xN, y 1, ) defines a

point on the main reflector. The equation of the main reflector is

2 2
Xi + Y1_ f(A-)

Zl 4 ff fl Ai

and the equation of the subreflector is

X2 4 y2

z = f2 4f 2 (A-2)

The spherical coordinates 0, (p define the direction of the general ray emerging from the

aperture. This ray is perpendicular to the assumed linear phase tilt and hence is parallel to

ab = i sine cos o + j'sine sin (p i k cosO (A-3)

Lower-case letters denote unit vectors, and i,j, k are the unit vectors parallel to the coordinate

axes.

The component ray from the point A on the array to the point B on the subreflector is given

by

=(x 2 - x1 + j(Y2 - y) + k(z 2 +1) . (A-4)

The unit vector A"B/IABI is equated with Eq. (A-3). This yields three equations which define a

line in three-dimensional space. Only two of these equations are independent:

tan (p (x, - x) = (y 2 - y)

(x -x) = (z2 + 1) (A-5)
tane9 ý_sl ( 2

Solving Eqs. (A-5) and (A-2) gives the coordinates of the first point of reflection B:

x -B * J132 -4AC

x2 2A

Y2 = y + (x 2 - x) tan w

2 2
x + Y(

z2  = f 2 - 4'f4-2 (A-6)

2f

_ ,_hI•



where

A = (i + tain 2 p)

B = 2y tan p - 2x tan.2  ÷ ta4 n+ os0

C = ly2 + x 2 tana2 4fos 4fV(f2 + t) - 2xy tan (p

Snell's law of reflection relates the incident, reflected, and normal unit vectors at the point
x2 ,Y2 , z2 on the subreflector

bc= ab - 2i 2 (?i2 •ab) (A-7)

The unit normal (fj) on the subreflector surface is

-
- I2+j2+ k(2f 2 )'(A)

n2 2-- (2A
( x 2f 2 + 4f 2 )

By using Eq. (A-3), the components of the unit vector 6-c are

(bc)x sine cos P - 2 2x22 I 2 sine cos p + y2 sine 9in + 2f cose]
x 2 + y 22 2 2

2Y2

(bc)y sine sinq - 2 y2 [x sinecos + y2 sine sinp + 2f, coso]
xZ +

X2 +y 2 + 4F2

4f
2(be) - cos8-x2 2 + [x2 sine cos w y2 sine sinp + 2f 2 oOO . (A-9)

X2  '2+

The component ray BC is

BC =i(x1 -2x) + j(y1 - y 2 ) + k(z, - (A-tO)

Equating the unit vectors BC/ I BCI = b7c, %e again, hat 1hree , qu,,!'i line in space,

only two of which are independent. Thus,

(be)
U (x I x 2 ) Y--Y2

x

(be)b-'• ! (x { t -x z -z z z
(be) (x1  2 ) Z1  2

Solving TE:qs. (A-11) and (A-0) gives the .conrdinate.: ,)i tIh.- pinlx

tor C:

J ' 'I



-BI * ýB2-4A7C
2A'

(bc)SYt - Y + ÷ (x - x 2 )+ x z ÷, x

z1 = 4ft ft (A-12)

where

A' 11+ [(bC) 1 2

( y lbc) . (bc)12 (bc)

2 (bc) 2 (bc) + (bc) + 2
C' 14f x -b~ 2x~y (b) 2  -(1 )YJ +Y2-4f (f1 +Zz)

x x x

Snell't law of reflection at the point x 1 , Yt z1 is written

cd =bc - 2Fi 1( b-) (A-13)

The unit normal at the point of reflection on the main reflector is

i(-x 1 ) + j(-yl) + k(2f,)
n - (A-I 4)

2 2+ 2f
xl+ y +4

By using Eqs. (A-9) and (A-14), the components of the unit vector cd are found:
i • 2 x t

(cd)x = (bc)- 2 +"2x 42 xp(bc)x +Yi(bc)y-2f,(bc)zI
x x2 y 2 + Vf1

SZ2y ,(cd)y = (be)y - 4ft [xi yl( YbC)y - 2f1(bc)z)

y Y1 b) 2fpc)2
+y+x1  y 1 +4 1

x 2 c2 + Vf2 [xi(bc)x +ylbc) y-2ft(bc)z . (A-tS)

x1  y1 +f 1

The component ray CD ic

CD = i(x' -x 1 +xj(y' - y1 ) + k(-z,) (A-16)

where the main aperture plane is defined as the plane z' 0. The equation E"D/ICDI Td yields

two equations which are sufficient to determine the coordinates in the aperture plane z' 0:
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(ed) I

from which

X, (cd)x
X = xI (ed)z z1

(Cd)y
Y' + (' -x)

z'=O

The optical path length is simply the sum of the component path lengths. Hence,

L= IAB-I + ff-Cl + IC-D (A-17)
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